Designing data-intensive applications : the big ideas behind reliable, scalable, and maintainable systems / Martín Kleppmann.
Tipo de material: TextoIdioma: Inglés Detalles de publicación: Boston : O'reilly, 2017.Edición: First edition 2017 ; fourth release, 2018Descripción: xix, 590 páginas : ilustraciones a blanco y negro ; 23 cmISBN:- 9781449373320
- QA 76 .76 .A76 .A65 .K612 2017
Tipo de ítem | Biblioteca actual | Signatura | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|
Monografía - Colección General | SUCURSAL JUAN PABLO DUARTE Area Administrativa | QA 76 .76 .A65 .K612 2017 (Navegar estantería(Abre debajo)) | Disponible | 1030253 |
Navegando Biblioteca «Juan Pablo Duarte» estanterías, Ubicación en estantería: Area Administrativa Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA 76 .73 .C154 .S52 2018 Microsoft visual C# step by step / | QA 76. 73 .S67 .B45 2016 T-SQL fundamentals / | QA 76 .758 .E34 2005 Reversing : secrets of reverse engineering / | QA 76 .76 .A65 .K612 2017 Designing data-intensive applications : the big ideas behind reliable, scalable, and maintainable systems / | QA 76 .76 .C68. S55 2012 Practical malware analysis : the hands-on guide to dissecting malicious software / | QA 76 .76 .D47 .S56 2012 Scrum : a breathtakingly brief and agile introduction / | QA 76. 76 .D57 .D35 2014 Practical reverse engineering : x86, x64, ARM, windows Kernel, reversing tools, and obfuscation / |
Part 1. Foundations of data systems. - 1. Reliable, scalable, and maintainable applications, 3. -- Data models and query languages, 27. -- 3. Storage and retrieval, 69. -- 4. Encoding and evolutuion, 111. -- Part 2. Distributed data. - 5. Replication, 151. -- 6. Partitioning, 199. -- 7. Transactions, 221. -- 8. The trouble with distributed systems, 273. -- 9. Consistency and consensus, 321. -- Part 3. Derived data. - 10. Batch processing, 389. -- 11. Stream processing, 439. -- 12. The future of data systems, 489.
Want to know how the best software engineers and architects structure their applications to make them scalable, reliable, and maintainable in the long term? This book examines the key principles, algorithms, and trade-offs of data systems, using the internals of various popular software packages and frameworks as examples. Tools at your disposal are evolving and demands on applications are increasing, but the principles behind them remain the same. You'll learn how to determine what kind of tool is appropriate for which purpose, and how certain tools can be combined to form the foundation of a good application architecture. You'll learn how to develop an intuition for what your systems are doing, so that you're better able to track down any problems that arise.
No hay comentarios en este titulo.