Banner BCRD
Imagen de portada de Amazon
Imagen de Amazon.com
Imagen de Google Jackets

Hands-on machine learning with scikit-learn and TensorFlow : concepts, tools and techniques to build intelligent systems / Aurélien Géron ; editor Nicole Tache ; interior designer David Futato ; cover designer Randy Comer ; illustrator Rebeca Demarest.

Por: Colaborador(es): Tipo de material: TextoTextoIdioma: Inglés Detalles de publicación: Beijing ; Boston : O'Reilly Media, 2017.Edición: First editionsDescripción: xx, 551 páginas : ilustraciones, gráficas, tablas a blanco y negro ; 23 cmISBN:
  • 9781491962299
Tema(s): Clasificación LoC:
  • Q 325 .5 .G47 2017
Contenidos:
Preface, xiii -- Part I. The fundamentals of machine learning -- 1. The machine learning landscape, 3 -- 2. End-to-end machine learning project, 33 -- 3. Classification, 81 -- 4. Training models, 107 -- 5. Support vector machines, 147 -- 6. Decision trees, 169 -- 7. Ensemble learning and Random Forests, 183 -- 8. Dimensionality reduction, 207 -- Part II. Neural networks and deep learning, 231 -- 10. Introduction to artificial neural networks, 257 -- 11. Training deep neural nets, 279 -- 12. Distributing TensorFklow across devices and servers, 319 -- 13. Convolutional neural networks, 361 -- 14. Recurrent neural networks, 387 -- 15. Autoencoders, 421 -- 16. Reinforcement learning, 447 -- A. Exercise solutions, 481 -- B. Machine learning project checklist, 507 -- C. SVM Dual problem, 513 -- D. Autodiff, 517 -- E. Other popular ann architectures, 525 -- Index, 535.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)

Material de apoyo del Departamento de Sistemas y Tecnología.

Preface, xiii -- Part I. The fundamentals of machine learning -- 1. The machine learning landscape, 3 -- 2. End-to-end machine learning project, 33 -- 3. Classification, 81 -- 4. Training models, 107 -- 5. Support vector machines, 147 -- 6. Decision trees, 169 -- 7. Ensemble learning and Random Forests, 183 -- 8. Dimensionality reduction, 207 -- Part II. Neural networks and deep learning, 231 -- 10. Introduction to artificial neural networks, 257 -- 11. Training deep neural nets, 279 -- 12. Distributing TensorFklow across devices and servers, 319 -- 13. Convolutional neural networks, 361 -- 14. Recurrent neural networks, 387 -- 15. Autoencoders, 421 -- 16. Reinforcement learning, 447 -- A. Exercise solutions, 481 -- B. Machine learning project checklist, 507 -- C. SVM Dual problem, 513 -- D. Autodiff, 517 -- E. Other popular ann architectures, 525 -- Index, 535.

No hay comentarios en este titulo.

para colocar un comentario.

Banco Central de la República Dominicana
Av. Pedro Henríquez Ureña, esq. Av. Leopoldo Navarro. Antigua sede, tercer piso
Apartado postal, 1347 | Santo Domingo de Guzmán, D. N., República Dominicana |
Teléfono: 809-221-9111 Exts.: 3653 y 3654|
Horario de servicios: L/V. 9:00 a. m. – 5:00 p. m.

Con tecnología Koha